SAGE MATH
Single Variable (x)
\[x + 2x^2 + x^3 = 100\]Using SageMath
Define X as variable in the domain of integer numbers and solve for x
ZZ (domains of integer numbers)
x = var('x', domain=ZZ)
leq = x + 2*x**2 + x**3
sol = solve(leq == 100, x)
print(sol) # 4
To verify
\[4 + 2*(4^2) + (4)^3 = 100\]we can confirm with
leq(x=4) # 100
solving
\[x_0^4 - 150x_0^3 + 4389x_0^2 - 43000x_0 +131100 = 0\]sage
x = var('x', domain=ZZ)
leq = x**4 - 150*x**3 + 4389*x**2 - 43000*x + 131100
sol = solve(leq == 0, x)
sol
Linear Equation
Two Variables (x, y)
\[x + y = 10\]x = var('x', domain=ZZ)
y = var('y', domain=ZZ)
sol = solve(x+y==10, (x,y))
sol
Solution
\[x = t_0, y = -t_0 + 10\]Say we have 2 equations
\[x + y = 10, x=y\]Solution
x = var('x', domain=ZZ)
y = var('y', domain=ZZ)
sol = solve([x+y==10, x==y], (x,y))
sol
Three Variables (x, y, z)
\[\begin{cases} 2x + y = 15 \\ x + y + z = 20 \\ 3z = 30 \end{cases}\]Solution
x = var('x', domain=ZZ)
y = var('y', domain=ZZ)
z = var('z', domain=ZZ)
sol = solve([x + x + y == 15, z + z + z==30, x+y+z ==20], (x,y,z))
sol
Matrix
Inverse of matrix Sage math
\[\begin{bmatrix} 0 & 2 & 0 & 0 \\ 3 & 0 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 7 \\ \end{bmatrix}\]A = matrix([[0,2,0,0], [3,0,0,0], [0,0,5,0], [0,0,0,7]])
A.inverse()
Fields
Finite Field of size 7
Zp = GF(7)